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What are the security implications of changing the timers’ resolution?
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Classification of JavaScript timing attacks

= Hardware-contention-based attacks

= Transient execution attacks

= Attacks based on system resources

= Attacks based on browser resources

Principle:  The attacker infers secrets from shared browser
resources.

Prerequisites: High resolution timers & shared browser
resources.

Examples: History sniffing, fingerprinting.
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JavaScript Timers

performance.now() : Resolution ranges from 5ps to 1 ms.
We need to time events in the order of 10ns.



performance.now() interpolation
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Time
Event 2
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Michael Schwarz et al. “Fantastic timers and where to find them: High-resolution microarchitectural
attacks in javascript™ In: International Conference on Financial Cryptography and Data Security. 2017
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performance.now() interpolation

Interpolated time: 7 ticks
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Schwarz et al., “Fantastic timers and where to find them: High-resolution microarchitectural attacks
in javascript”



SharedArrayBuffer
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Interpolation and jitter

Interpolated time: 9 ticks
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Firefox: 1 ms with jitter.
Chrome: 100 ps with jitter.



What can we do about SharedArrayBuffer?

Disable them.
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Disable them.

SharedArrayBuffer were disabled on Firefox 58 and Chrome 64
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» SharedArrayBuffer are an important part of the evolution of
JavaScript from a single threaded language to multithreading
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Security vs Practicality

= High resolution timers useful for performance measurements,
network, animation

» SharedArrayBuffer are an important part of the evolution of
JavaScript from a single threaded language to multithreading
Browser vendors want more efficient, less penalizing countermeasures.

Isolation-based countermeasures
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Site isolation

Process 1 Process 2 Process 3

Charles Reis, Alexander Moshchuk, and Nasko Oskov. “Site Isolation: Process Separation for Web
Sites within the Browser”. In: USENIX Security Symposium. 2019
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COOP/COEP

Set of HTTP headers between a top level domain and all loaded resources.

If every resource agrees on a shared policy, the group becomes its own process.
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COOP/COEP

Set of HTTP headers between a top level domain and all loaded resources.
If every resource agrees on a shared policy, the group becomes its own process.
Not activated by default, must be managed by the website.

If an attacker controls their website, they can activate/deactivate it at will.
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Different processes means:

= Different address spaces
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Goals of isolation

Different processes means:

= Different address spaces — Prevents Spectre vl and other attacks that target the
same address space

What site isolation does not prevent:

= Hardware contention timing attacks.

= Cross address space (transient execution) attacks 2.

2For instance https://leaky.page/ was published a few days after our paper
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A change in paradigm

With the introduction of site isolation and COOP/COEP, browser vendors considered
the main security issue fixed.

il5



A change in paradigm

With the introduction of site isolation and COOP/COEP, browser vendors considered
the main security issue fixed.

Firefox 79 reallowed SharedArrayBuffer and set the resolution of performance.
now() to 20 ps with COOP/COEP.

Chrome 76 reallowed SharedArrayBuffer with COOP/COEP and set the resolution
of performance.now() to 5ps with jitter in all cases

il5



Impact of these changes?
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= New, isolation-based countermeasures are strong countermeasures, but focused on
Spectre or software-based timing attacks.

= Hardware-based timing attacks as well as other transient execution attacks are
only mitigated by timing-based countermeasures.

= Recent changes in timers have not been motivated or evaluated.

What are the security implications of reintroducing high resolution
timers?
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What are the security implications of reintroducing high resolution timers?

Automated framework to evaluate JavaScript timers using Selenium.
Works on Chrome and Firefox, including past and future versions.

Our goal is that this analysis can be helpful not only at this point in time, but also in
the future.

The code is available here: https://github.com/thomasrokicki/in-search-of-lost-time
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How to evaluate the efficiency of a timer

Resolution: Smallest operation a timer can measure.
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How to evaluate the efficiency of a timer
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How to evaluate the efficiency of a timer

Resolution: Smallest operation a timer can measure.

Measurement overhead: Time it takes to make the measurement.

Measurement time: 1 clock period.

Event 2 Tic%k
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Performance.now interpolation

Measurement overhead ~= the resolution of performance.now()
Resolution is hard to evaluate because of the jitter.

19



Distinguishing hits and misses on Chrome 84

Goal: Differentiate cache hits from cache misses
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Distinguishing hits and misses on Chrome 84

Goal: Differentiate cache hits from cache misses

10 | | | | |
[ cache miss
m cache hit
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0 5 10 15 20 25
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Amplification

Repeat the measurement to reduce the randomness
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Amplification

Repeat the measurement to reduce the randomness

Lowers the error rate

Increasing the repetitions

Increases the measurement time
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Time / Precision compromise
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Evaluation at 5% error rate

Browser base resolution Number of repetitions Measurement overhead
Firefox 88 without COOP/COEP 1 ms with jitter 15 18 ms
Firefox 88 with COOP/COEP 20 ps without jitter 2 45 ps
Chrome 90 5 ps with jitter 8 44 ps
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SharedArrayBuffer

Resolution: Time of an incrementation in the SharedArrayBuffer — 10ns

Measurement overhead: Twice the time of a read — 20ns
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Concrete example: ldeal bit rate

blah
blah
blah

Browser Ideal bit rate [bit/s]
Firefox 88 without COOP/COEP 60

Firefox 88 with COOP/COEP 22 x 10*
Chrome 90 22 x 10*
SharedArrayBuffer 50 x 100
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Concrete example: building an eviction set

Prerequisites for most cache attacks (hence transient execution attacks).

Requires O(|cache lines|) time measurements.

Browser Practical computation time
Firefox 88 without COOP/COEP ~ 10 min

Firefox 88 with COOP/COEP ~ 50s

Chrome 90 ~ 50s
SharedArrayBuffer ~ 1s
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Some perspective

In an environment with COOP/COEP, on Firefox 88 an attacker can:

27



Some perspective

In an environment with COOP/COEP, on Firefox 88 an attacker can:

= Create a covert channel with an ideal bandwidth 800,000 times superior compared
to Firefox 78

27



Some perspective

In an environment with COOP/COEP, on Firefox 88 an attacker can:

= Create a covert channel with an ideal bandwidth 800,000 times superior compared
to Firefox 78

= Compute an eviction set in a matter of seconds, whereas it required tens of
minutes on Firefox 78

27



Some perspective

In an environment with COOP/COEP, on Firefox 88 an attacker can:

= Create a covert channel with an ideal bandwidth 800,000 times superior compared
to Firefox 78

= Compute an eviction set in a matter of seconds, whereas it required tens of
minutes on Firefox 78

Timers are more of a threat than two years ago.
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Powerful and fast timers with a 10-100 ns resolution exist.

Site isolation and COOP/COEP only apply to Spectre vl and some system
resource attacks.

Browsers are potentially vulnerable to many hardware or transient execution
attacks.

More viable countermeasures must be found, but it is not suited for browsers.
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Thank you for your attention

Contact me here: thomas.rokicki@irisa.fr
Feel free to read the paper for more technical details!

Find the code here:
https://github.com/thomasrokicki/in-search-of-lost-time
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