
In Search of Lost Time:
A Review of JavaScript Timers in Browsers

Thomas Rokicki
Clémentine Maurice
Pierre Laperdrix
Pass The Salt - 07/07/21

1

JavaScript-based timing attacks

JavaScript Timing Attacks

JavaScript Timing Attacks

Exploit timing differences to infer secrets from the JavaScript sandbox.

Resolution of 10 -100 ns

2

JavaScript-based timing attacks

JavaScript Timing Attacks

JavaScript Timing Attacks

Exploit timing differences to infer secrets from the JavaScript sandbox.

Resolution of 10 -100 ns

2

JavaScript-based timing attacks

JavaScript Timing Attacks

JavaScript Timing Attacks

Exploit timing differences to infer secrets from the JavaScript sandbox.

Resolution of 10 -100 ns

2

JavaScript-based timing attacks

JavaScript Timing Attacks

JavaScript Timing Attacks

Exploit timing differences to infer secrets from the JavaScript sandbox.

Resolution of 10 -100 ns

2

JS and timers: A complicated history

2015 2016 2018 2019 2020
Firefox 41
resolution:

5 µs

Firefox 79
& COOP/COEP:

resolution:
20 µs

Firefox 60
resolution + jitter:

1 ms

Firefox 59
resolution: 2 ms

Firefox 57.0.4
resolution: 20 µs

Chrome 44
resolution:

5 µs

Chrome 64
resolution + jitter:

100 µs

Chrome 72
resolution + jitter:

5 µs

What are the security implications of changing the timers’ resolution?

3

JS and timers: A complicated history

2015 2016 2018 2019 2020
Firefox 41
resolution:

5 µs

Firefox 79
& COOP/COEP:

resolution:
20 µs

Firefox 60
resolution + jitter:

1 ms

Firefox 59
resolution: 2 ms

Firefox 57.0.4
resolution: 20 µs

Chrome 44
resolution:

5 µs

Chrome 64
resolution + jitter:

100 µs

Chrome 72
resolution + jitter:

5 µs

What are the security implications of changing the timers’ resolution?
3

Classification of JavaScript timing attacks

• Hardware-contention-based attacks
• Transient execution attacks
• Attacks based on system resources
• Attacks based on browser resources

4

Classification of JavaScript timing attacks

• Hardware-contention-based attacks
Principle: The attacker infers secrets from timing differences

caused by hardware state
Prerequisites: High resolution timers & Shared hardware

resources
Examples: JavaScript Prime+Probe, Rowhammer.js

• Transient execution attacks
• Attacks based on system resources
• Attacks based on browser resources

4

Classification of JavaScript timing attacks

• Hardware-contention-based attacks
• Transient execution attacks

Principle: The attacker infers secrets from traces of transient
execution on the hardware.

Prerequisites: Transient execution, high resolution timers &
shared hardware resources

Examples: Spectre, RIDL
• Attacks based on system resources
• Attacks based on browser resources

4

Classification of JavaScript timing attacks

• Hardware-contention-based attacks
• Transient execution attacks
• Attacks based on system resources

Principle: The attacker infers secrets from shared system
resources.

Prerequisites: High resolution timers & shared system
resources.

Examples: Keystroke attacks, memory deduplication attacks.
• Attacks based on browser resources

4

Classification of JavaScript timing attacks

• Hardware-contention-based attacks
• Transient execution attacks
• Attacks based on system resources
• Attacks based on browser resources

Principle: The attacker infers secrets from shared browser
resources.

Prerequisites: High resolution timers & shared browser
resources.

Examples: History sniffing, fingerprinting.

4

JavaScript Timers

performance.now()

: Resolution ranges from 5 µs to 1 ms.
We need to time events in the order of 10 ns.

5

JavaScript Timers

performance.now() : Resolution ranges from 5 µs to 1 ms.

We need to time events in the order of 10 ns.

5

JavaScript Timers

performance.now() : Resolution ranges from 5 µs to 1 ms.
We need to time events in the order of 10 ns.

5

performance.now() interpolation

Time

Event 1

Tick Tick Tick Tick Tick Tick Tick

Interpolated time: 7 ticks

Time

Event 2

Tick Tick Tick Tick Tick

Interpolated time: 5 ticks

Michael Schwarz et al. “Fantastic timers and where to find them: High-resolution microarchitectural
attacks in javascript”. In: International Conference on Financial Cryptography and Data Security. 2017

6

performance.now() interpolation

Time

Event 1 Tick Tick Tick Tick Tick Tick Tick

Interpolated time: 7 ticks

Time

Event 2

Tick Tick Tick Tick Tick

Interpolated time: 5 ticks

Schwarz et al., “Fantastic timers and where to find them: High-resolution microarchitectural attacks
in javascript”

6

performance.now() interpolation

Time

Event 1 Tick Tick Tick Tick Tick Tick Tick

Interpolated time: 7 ticks

Time

Event 2

Tick Tick Tick Tick Tick

Interpolated time: 5 ticks

Schwarz et al., “Fantastic timers and where to find them: High-resolution microarchitectural attacks
in javascript”

6

performance.now() interpolation

Time

Event 1 Tick Tick Tick Tick Tick Tick Tick

Interpolated time: 7 ticks

Time

Event 2 Tick Tick Tick Tick Tick

Interpolated time: 5 ticks

Schwarz et al., “Fantastic timers and where to find them: High-resolution microarchitectural attacks
in javascript”

6

performance.now() interpolation

Time

Event 1 Tick Tick Tick Tick Tick Tick Tick

Interpolated time: 7 ticks

Time

Event 2 Tick Tick Tick Tick Tick

Interpolated time: 5 ticks

Schwarz et al., “Fantastic timers and where to find them: High-resolution microarchitectural attacks
in javascript”

6

SharedArrayBuffer

Time

Main Thread Event 1

Init Clock

Clock thread

SharedArrayBuffer

Init Sab Tick Tick Tick Tick

Timestamp Timestamp

Event one lasts 4 ticks 7

How to remove timers

Reducing the resolution alone is not sufficient because of interpolation. 1

Add jitter to the measurement.

Time

1This applies to other all timing-based functions such as callbacks, animation functions and others.

8

How to remove timers

Reducing the resolution alone is not sufficient because of interpolation. 1

Add jitter to the measurement.

Time

1This applies to other all timing-based functions such as callbacks, animation functions and others.

8

How to remove timers

Reducing the resolution alone is not sufficient because of interpolation. 1

Add jitter to the measurement.

Time

1This applies to other all timing-based functions such as callbacks, animation functions and others.

8

Interpolation and jitter

Time

Event 1 Tick Tick Tick Tick Tick Tick Tick Tick Tick

Interpolated time: 9 ticks

Time

Tick Tick Tick Tick TickEvent 1

Interpolated time: 5 ticks

Firefox: 1 ms with jitter.
Chrome: 100 µs with jitter.

9

Interpolation and jitter

Time

Event 1 Tick Tick Tick Tick Tick Tick Tick Tick Tick

Interpolated time: 9 ticks

Time

Tick Tick Tick Tick TickEvent 1

Interpolated time: 5 ticks

Firefox: 1 ms with jitter.
Chrome: 100 µs with jitter.

9

What can we do about SharedArrayBuffer?

Disable them.

SharedArrayBuffer were disabled on Firefox 58 and Chrome 64

10

What can we do about SharedArrayBuffer?

Disable them.

SharedArrayBuffer were disabled on Firefox 58 and Chrome 64

10

Security vs Practicality

• High resolution timers useful for performance measurements,
network, animation

• SharedArrayBuffer are an important part of the evolution of
JavaScript from a single threaded language to multithreading

Browser vendors want more efficient, less penalizing countermeasures.

Isolation-based countermeasures

11

Security vs Practicality

• High resolution timers useful for performance measurements,
network, animation

• SharedArrayBuffer are an important part of the evolution of
JavaScript from a single threaded language to multithreading

Browser vendors want more efficient, less penalizing countermeasures.

Isolation-based countermeasures

11

Security vs Practicality

• High resolution timers useful for performance measurements,
network, animation

• SharedArrayBuffer are an important part of the evolution of
JavaScript from a single threaded language to multithreading

Browser vendors want more efficient, less penalizing countermeasures.

Isolation-based countermeasures

11

Site isolation

Process 1 Process 2 Process 3

Charles Reis, Alexander Moshchuk, and Nasko Oskov. “Site Isolation: Process Separation for Web
Sites within the Browser”. In: USENIX Security Symposium. 2019

12

COOP/COEP

Set of HTTP headers between a top level domain and all loaded resources.

If every resource agrees on a shared policy, the group becomes its own process.

Not activated by default, must be managed by the website.

If an attacker controls their website, they can activate/deactivate it at will.

13

COOP/COEP

Set of HTTP headers between a top level domain and all loaded resources.

If every resource agrees on a shared policy, the group becomes its own process.

Not activated by default, must be managed by the website.

If an attacker controls their website, they can activate/deactivate it at will.

13

Goals of isolation

Different processes means:

• Different address spaces

→ Prevents Spectre v1 and other attacks that target the
same address space

What site isolation does not prevent:

• Hardware contention timing attacks.
• Cross address space (transient execution) attacks 2.

14

Goals of isolation

Different processes means:

• Different address spaces → Prevents Spectre v1 and other attacks that target the
same address space

What site isolation does not prevent:

• Hardware contention timing attacks.
• Cross address space (transient execution) attacks 2.

14

Goals of isolation

Different processes means:

• Different address spaces → Prevents Spectre v1 and other attacks that target the
same address space

What site isolation does not prevent:

• Hardware contention timing attacks.
• Cross address space (transient execution) attacks 2.

14

Goals of isolation

Different processes means:

• Different address spaces → Prevents Spectre v1 and other attacks that target the
same address space

What site isolation does not prevent:

• Hardware contention timing attacks.

• Cross address space (transient execution) attacks 2.

14

Goals of isolation

Different processes means:

• Different address spaces → Prevents Spectre v1 and other attacks that target the
same address space

What site isolation does not prevent:

• Hardware contention timing attacks.
• Cross address space (transient execution) attacks 2.

.
2For instance https://leaky.page/ was published a few days after our paper

14

A change in paradigm

With the introduction of site isolation and COOP/COEP, browser vendors considered
the main security issue fixed.

Firefox 79 reallowed SharedArrayBuffer and set the resolution of performance.
now() to 20 µs with COOP/COEP.

Chrome 76 reallowed SharedArrayBuffer with COOP/COEP and set the resolution
of performance.now() to 5 µs with jitter in all cases

15

A change in paradigm

With the introduction of site isolation and COOP/COEP, browser vendors considered
the main security issue fixed.

Firefox 79 reallowed SharedArrayBuffer and set the resolution of performance.
now() to 20 µs with COOP/COEP.

Chrome 76 reallowed SharedArrayBuffer with COOP/COEP and set the resolution
of performance.now() to 5 µs with jitter in all cases

15

Impact of these changes?

• Timing-based countermeasures are efficient against most timing attacks.

• New, isolation-based countermeasures are strong countermeasures, but focused on
Spectre or software-based timing attacks.

• Hardware-based timing attacks as well as other transient execution attacks are
only mitigated by timing-based countermeasures.

• Recent changes in timers have not been motivated or evaluated.

What are the security implications of reintroducing high resolution
timers?

16

Impact of these changes?

• Timing-based countermeasures are efficient against most timing attacks.
• New, isolation-based countermeasures are strong countermeasures, but focused on

Spectre or software-based timing attacks.

• Hardware-based timing attacks as well as other transient execution attacks are
only mitigated by timing-based countermeasures.

• Recent changes in timers have not been motivated or evaluated.

What are the security implications of reintroducing high resolution
timers?

16

Impact of these changes?

• Timing-based countermeasures are efficient against most timing attacks.
• New, isolation-based countermeasures are strong countermeasures, but focused on

Spectre or software-based timing attacks.
• Hardware-based timing attacks as well as other transient execution attacks are

only mitigated by timing-based countermeasures.

• Recent changes in timers have not been motivated or evaluated.

What are the security implications of reintroducing high resolution
timers?

16

Impact of these changes?

• Timing-based countermeasures are efficient against most timing attacks.
• New, isolation-based countermeasures are strong countermeasures, but focused on

Spectre or software-based timing attacks.
• Hardware-based timing attacks as well as other transient execution attacks are

only mitigated by timing-based countermeasures.
• Recent changes in timers have not been motivated or evaluated.

What are the security implications of reintroducing high resolution
timers?

16

Impact of these changes?

• Timing-based countermeasures are efficient against most timing attacks.
• New, isolation-based countermeasures are strong countermeasures, but focused on

Spectre or software-based timing attacks.
• Hardware-based timing attacks as well as other transient execution attacks are

only mitigated by timing-based countermeasures.
• Recent changes in timers have not been motivated or evaluated.

What are the security implications of reintroducing high resolution
timers?

16

What are the security implications of reintroducing high resolution timers?

Automated framework to evaluate JavaScript timers using Selenium.

Works on Chrome and Firefox, including past and future versions.

Our goal is that this analysis can be helpful not only at this point in time, but also in
the future.

The code is available here: https://github.com/thomasrokicki/in-search-of-lost-time

17

What are the security implications of reintroducing high resolution timers?

Automated framework to evaluate JavaScript timers using Selenium.

Works on Chrome and Firefox, including past and future versions.

Our goal is that this analysis can be helpful not only at this point in time, but also in
the future.

The code is available here: https://github.com/thomasrokicki/in-search-of-lost-time

17

What are the security implications of reintroducing high resolution timers?

Automated framework to evaluate JavaScript timers using Selenium.

Works on Chrome and Firefox, including past and future versions.

Our goal is that this analysis can be helpful not only at this point in time, but also in
the future.

The code is available here: https://github.com/thomasrokicki/in-search-of-lost-time

17

How to evaluate the efficiency of a timer

Resolution: Smallest operation a timer can measure.

Measurement overhead: Time it takes to make the measurement.

Time
Event 1 TickTickTickTickTickTickTickTick

Measurement time: 1 clock period.

Time
Event 2 Tick

Measurement time: 1 clock period.

18

How to evaluate the efficiency of a timer

Resolution: Smallest operation a timer can measure.
Measurement overhead: Time it takes to make the measurement.

Time
Event 1 TickTickTickTickTickTickTickTick

Measurement time: 1 clock period.

Time
Event 2 Tick

Measurement time: 1 clock period.

18

How to evaluate the efficiency of a timer

Resolution: Smallest operation a timer can measure.
Measurement overhead: Time it takes to make the measurement.

Time
Event 1 TickTickTickTickTickTickTickTick

Measurement time: 1 clock period.

Time
Event 2 Tick

Measurement time: 1 clock period.

18

Performance.now interpolation

Measurement overhead ∼= the resolution of performance.now()
Resolution is hard to evaluate because of the jitter.

19

Distinguishing hits and misses on Chrome 84

Goal: Differentiate cache hits from cache misses

0 5 10 15 20 25

2

4

6

8

10

Interpolated time [performance.now()]

Pe
rc

en
ta

ge
of

oc
cu

rre
nc

e

cache miss
cache hit

20

Distinguishing hits and misses on Chrome 84

Goal: Differentiate cache hits from cache misses

0 5 10 15 20 25

2

4

6

8

10

Interpolated time [performance.now()]

Pe
rc

en
ta

ge
of

oc
cu

rre
nc

e
cache miss
cache hit

20

Amplification

Repeat the measurement to reduce the randomness

Increasing the repetitions

Lowers the error rate

Increases the measurement time

21

Amplification

Repeat the measurement to reduce the randomness

Increasing the repetitions

Lowers the error rate

Increases the measurement time

21

Amplification

Repeat the measurement to reduce the randomness

Increasing the repetitions

Lowers the error rate

Increases the measurement time

21

Time / Precision compromise

0 5 10 15 20 25 30 35 40 45 500

10

20

30

Number of repetitions

Er
ro

rr
at

e
(%

)

Firefox 81
Chrome 84

5% error rate

22

Evaluation at 5% error rate

Browser base resolution Number of repetitions Measurement overhead

Firefox 88 without COOP/COEP 1 ms with jitter 15 18 ms
Firefox 88 with COOP/COEP 20 µs without jitter 2 45 µs
Chrome 90 5 µs with jitter 8 44 µs

23

SharedArrayBuffer

Resolution: Time of an incrementation in the SharedArrayBuffer → 10 ns
Measurement overhead: Twice the time of a read → 20 ns

24

Concrete example: Ideal bit rate

blah
blah
blah

Browser Ideal bit rate [bit/s]

Firefox 88 without COOP/COEP 60
Firefox 88 with COOP/COEP 22 × 104

Chrome 90 22 × 104

SharedArrayBuffer 50 × 106

25

Concrete example: building an eviction set

Prerequisites for most cache attacks (hence transient execution attacks).

Requires O(|cache lines|) time measurements.

Browser Practical computation time

Firefox 88 without COOP/COEP ∼ 10 min
Firefox 88 with COOP/COEP ∼ 50 s
Chrome 90 ∼ 50 s
SharedArrayBuffer ∼ 1 s

26

Some perspective

In an environment with COOP/COEP, on Firefox 88 an attacker can:

• Create a covert channel with an ideal bandwidth 800,000 times superior compared
to Firefox 78

• Compute an eviction set in a matter of seconds, whereas it required tens of
minutes on Firefox 78

Timers are more of a threat than two years ago.

27

Some perspective

In an environment with COOP/COEP, on Firefox 88 an attacker can:

• Create a covert channel with an ideal bandwidth 800,000 times superior compared
to Firefox 78

• Compute an eviction set in a matter of seconds, whereas it required tens of
minutes on Firefox 78

Timers are more of a threat than two years ago.

27

Some perspective

In an environment with COOP/COEP, on Firefox 88 an attacker can:

• Create a covert channel with an ideal bandwidth 800,000 times superior compared
to Firefox 78

• Compute an eviction set in a matter of seconds, whereas it required tens of
minutes on Firefox 78

Timers are more of a threat than two years ago.

27

Some perspective

In an environment with COOP/COEP, on Firefox 88 an attacker can:

• Create a covert channel with an ideal bandwidth 800,000 times superior compared
to Firefox 78

• Compute an eviction set in a matter of seconds, whereas it required tens of
minutes on Firefox 78

Timers are more of a threat than two years ago.

27

Conclusion

• Powerful and fast timers with a 10-100 ns resolution exist.

• Site isolation and COOP/COEP only apply to Spectre v1 and some system
resource attacks.

• Browsers are potentially vulnerable to many hardware or transient execution
attacks.

• More viable countermeasures must be found, but it is not suited for browsers.

28

Conclusion

• Powerful and fast timers with a 10-100 ns resolution exist.
• Site isolation and COOP/COEP only apply to Spectre v1 and some system

resource attacks.

• Browsers are potentially vulnerable to many hardware or transient execution
attacks.

• More viable countermeasures must be found, but it is not suited for browsers.

28

Conclusion

• Powerful and fast timers with a 10-100 ns resolution exist.
• Site isolation and COOP/COEP only apply to Spectre v1 and some system

resource attacks.
• Browsers are potentially vulnerable to many hardware or transient execution

attacks.

• More viable countermeasures must be found, but it is not suited for browsers.

28

Conclusion

• Powerful and fast timers with a 10-100 ns resolution exist.
• Site isolation and COOP/COEP only apply to Spectre v1 and some system

resource attacks.
• Browsers are potentially vulnerable to many hardware or transient execution

attacks.
• More viable countermeasures must be found, but it is not suited for browsers.

28

Thank you for your attention

Contact me here: thomas.rokicki@irisa.fr

Feel free to read the paper for more technical details!

Find the code here:
https://github.com/thomasrokicki/in-search-of-lost-time

29

