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Abstract
Modern Systems-on-Chip (SoCs) employ undocumented lin-
ear address-scrambling functions to obfuscate DRAM ad-
dressing, which complicates DRAM-aware performance opti-
mizations and hinders proactive security analysis of DRAM-
based attacks; most notably, Rowhammer. Although previous
work tackled the issue of reversing physical-to-DRAM map-
ping, existing heuristic-based reverse-engineering approaches
are partial, costly, and impractical for comprehensive recovery.
This paper establishes a rigorous theoretical foundation and
provides efficient practical algorithms for black-box, complete
physical-to-DRAM address-mapping recovery.

We first formulate the reverse-engineering problem within
a linear algebraic model over the finite field GF(2). We charac-
terize the timing fingerprints of row-buffer conflicts, proving
a relationship between a bank addressing matrix and an em-
pirically constructed matrix of physical addresses. Based on
this characterization, we develop an efficient, noise-robust,
and fully platform-agnostic algorithm to recover the full bank-
mask basis in polynomial time, a significant improvement
over the exponential search from previous works. We further
generalize our model to complex row mappings, introducing
new hardware-based hypotheses that enable the automatic
recovery of a row basis instead of previous human-guided
contributions.

Evaluations across embedded and server-class architectures
confirm our method’s effectiveness, successfully reconstruct-
ing known mappings and uncovering previously unknown
scrambling functions. Our method provides a 99% recall and
accuracy on all tested platforms. Most notably, Knock-Knock
runs in under a few minutes, even on systems with more than
500GB of DRAM, showcasing the scalability of our method.
Our approach provides an automated, principled pathway to
accurate DRAM reverse engineering.

1 Introduction

Modern computing systems rely on Dynamic Random Ac-
cess Memory (DRAM) as a high-throughput, low-latency

memory subsystem. However, manufacturers often obscure
the physical-to-DRAM addressing schemes using undocu-
mented linear scrambling functions [26, 32]. Consequently,
reverse engineering becomes a prerequisite for conducting
precise side-channel and fault-injection analyses [2, 7, 22],
as well as for developing effective mitigations [21]. Without
knowledge of the DRAM addressing function, an attacker
cannot reliably target specific DRAM rows or banks, limit-
ing the feasibility and repeatability of DRAM-based attacks
such as Rowhammer [19] or memory-aware cache attacks [2].
Similarly, defenders cannot deploy targeted mitigations, e.g.,
memory fencing, error detection, or access-pattern random-
ization [33], without understanding which physical addresses
map to vulnerable DRAM structures [21]. Beyond security,
this mapping is also critical in systems research: memory
allocation [1, 25], or DRAM-aware data placement strate-
gies [31, 34] all benefit from accurate knowledge of the un-
derlying physical-to-DRAM mapping.

Logically, researchers have already tried to reverse engi-
neer this physical-to-DRAM mapping. Early proposed solu-
tions to reverse DRAM addressing functions either rely on
invasive physical probing [16, 26] or exhaustive brute-force
approaches [13, 26, 30]. This exhaustive search phase has
exponential complexity in terms of the number of bits of
the DRAM address, which means methods relying on brute
force scale poorly with larger DRAM. As proved by previous
work [30], exhaustive-search solutions [26] can take hours or
even longer to execute successfully on current yet standardly-
sized DRAM systems, severely limiting their applicability
in practical scenarios. While some works [10, 32] tried ad-
dressing this complexity issue to reduce computation time by
crafting customized solutions tailored to specific platforms,
this came at the expense of generalizability and automation.
Another limitation of existing approaches is noise: The first
phase of the reverse engineering process relies on a timing
side channel, where misclassification can happen, resulting
in broken masks. While previous works [26, 30] repeated the
measurements to reduce noise impact, a misclassification in
the experimental phase will introduce errors in the reversing
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phase.
To address these limitations, we present Knock-Knock, a

principled, efficient, and entirely automated approach to re-
verse engineer physical-to-DRAM address translation. Our
approach treats the physical-to-DRAM translation as a black
box, reversing the entire pipeline without separating the mem-
ory controller and DRAM-internal mappings individually.
Knock-Knock leverages the row-buffer conflict side chan-
nel [26] to build sets of addresses mapping to the same bank
or row, then introduces a reduction of the search space us-
ing nullspace analysis. We present, to the best of our knowl-
edge, the first analytical framework for physical-to-DRAM
address translation, which we leverage to achieve a more
efficient, broadly applicable, and precise analysis. Our solu-
tion eliminates the exponential search phase altogether and
introduces four contributions:

Reduced search space through algebra Thanks to an alge-
braic formalization of the problem, we reduce the search
space by proving that the bank/channel masks form a
Nullspace(D) basis, where D is a sparse difference ma-
trix. Computing that null space is at most of complexity
O(n3) in the number of rows, removing the exponential
term that limited prior tools.

Provable, noise-aware sample bound. We derived a
closed-form expression that theoretically guarantees full
mask recovery even with mislabeled samples, turning
the heuristic "collect-until-it-works" from previous
works into a one-line calculation.

Automatic, low-weight row masks From this reduced
search space, we retrieve the row addressing func-
tion with an algorithm using minor hardware-based
hypotheses.

DRAM-agnostic approach Because the method needs only
the existence of row-buffer conflicts, Knock-Knock does
not assume prior knowledge of the DRAM hierarchy
(module, rank, bank group, etc.) to reverse-engineer the
bank masks. Our method only uses empirically verified
assumptions about the hardware to reverse row masks.
This approach extends applicability beyond systems with
well-known or documented memory configurations, e.g.,
desktops or HPC-class servers, to more constrained en-
vironments like undocumented mobile, IoT SoCs, and
cloud platforms. In these cases, components may be sol-
dered, obfuscated in the PCB, or remote with limited
access to system information. Existing tools often fail
under such conditions, or require manual guidance to
function effectively [10, 26].

Validated on 10 platforms, server, consumer, and embedded
SoCs, Knock-Knock turns DRAM address reverse engineer-
ing from a labor-intensive, sometimes platform-specific effort
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Figure 1: Organization of an example DRAM module. It is
composed of two ranks, each handling 8 banks. Each bank is
composed of 5 columns and 2 rows. Memory systems may
contain several channels, each containing multiple modules.

into a generic, noise-resistant push-button procedure that com-
pletes in minutes with 99% accuracy. Most notably, Knock-
Knock recovered the physical-to-DRAM mapping functions
of a server-class SoC with 512 GB of RAM in a few min-
utes. To support reproducible and maintainable research, we
publish our code and data in an open repository1.

The remainder of this paper is organized as follows: Sec-
tion 2 presents relevant background and Section 3 surveys the
state-of-the-art. Section 4 introduces the reverse-engineering
methodology proposed by Knock-Knock, along with the math-
ematical formalization used in subsequent sections, which are
at the core of our contributions. Then, Section 5 shows how
Knock-Knock reverse engineers the parity masks of the ad-
dressing function. In Section 6, we present our method to
retrieve the full row bits of the addresses and generalize our
approach to more complex addressing functions. Section 7
describes the experimental setup used to validate our method-
ology and the results obtained on a range of different types of
platforms. We finally discuss the results obtained in Section 8
and conclude the paper in Section 9.

2 Background

2.1 DRAM Organization

As illustrated in Figure 1, DRAM modules are organized in
a hierarchy of channels, modules, ranks, banks, rows, and
columns, down to individual cells, each containing a single
bit [14,15]. Each channel can be used independently, allowing
access distribution. These channels can contain multiple mod-
ules, which can be further divided into ranks, often one on
the front and one on the back of the module. Those ranks are

1https://github.com/antpln/Knock-Knock
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Figure 2: Distribution of elapsed cycles between loads with
and without row conflicts
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Figure 3: Simplified view of translations from Virtual Address
to DRAM Location containing the channel, module, rank,
bank, row, and column of the accessed byte

composed of different row/column arrays, called banks. Be-
sides the memory array, each bank contains circuits to serve
the individual cells, notably the row buffer. From a logical
perspective, the row buffer can be seen as a cache for the most
recently accessed row. Subsequent accesses to the same row
are directly served from this buffer, reducing access latency.
However, if a different row is accessed in the same bank, the
DRAM controller must first close the current row and open
the new one, which incurs a higher latency. Figure 2 shows
that the access latency follows a mixture of two distributions:
one with lower latency when accessing the same row (on the
left), and one with higher latency when accessing a different
row (on the right). This event is called a row conflict and
constitutes a fundamental side channel to enable improved
Rowhammer [7, 18, 20, 22, 26] and cache [2, 28] attacks.

2.2 DRAM Addressing

The memory controller is responsible for translating physical
addresses used by the CPU to coordinate system mapping
to the location of the data in the DRAM hierarchy. Figure 3
summarizes the translations made from virtual addresses to
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Figure 4: Example of a linear function to address banks. It
uses 3 parity masks. bi and pi represent, respectively, the bank
and physical address bits.

DRAM. This translation is opaque to any process running on
the CPU. The result of the physical-to-DRAM-location ad-
dress translation is composed of a 6-tuple [Ch, Dm, Rk, Bk,
Row, Col], which indicates, respectively, the channel, mod-
ule, rank, bank, row, and column of the target cell. Previous
works showed that this translation is done linearly [10,19,26]
by XORing certain bits of the physical address between them
to form the DRAM address. An example of such mapping is
shown in Figure 4, where physical address bits Pi are mapped
to bank index bits Bi through XORs. Which bits are used as
inputs for each XOR operator are defined by the so-called par-
ity masks. In some cases [23], the addressing can directly map
bits without using XOR functions. This represents a sub-case
of linearity, as a direct bit-to-bit assignment is just a parity
mask with only one bit set.

This XOR scrambling mechanism allows for optimizations
such as bank and channel interleaving [10], reducing both
stress on the DRAM cells and access latency. While AMD
publicly documented the functions for older generations of
processors in their BIOS and Kernel Developer’s Guide [26],
manufacturers often do not document them publicly.

Therefore, the relation between a physical address and the
location of its related byte in the DRAM — described as the
tuple [Ch, Dm, Rk, Bk, Row, Col] — is often unknown.

In this work, we address the problem of unknown
physical-to-DRAM address mappings and provide a
new, provably efficient method to reverse-engineer
DRAM address mapping functions that is platform-
and DRAM-geometry-agnostic.

3 Related Works

In this section, we survey previous related work. To better
motivate the need to know the physical-to-DRAM mapping,
we first (Section 3.1) present different attacks that were only
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possible after unlocking these addressing functions. Then
(Section 3.2) we introduce important works from the literature,
describe their strategies to reverse-engineer address mappings,
and provide a qualitative comparison among them and our
Knock-Knock proposal. We finish the review of related works
(Section 3.3) with a deep focus on works that use a linear
algebra approach to discover unknown mapping functions.

3.1 Attacks Through Known Addressing Func-
tions

Various works have already shown how to leverage knowledge
of the physical-to-DRAM mapping to craft more powerful
attacks. We can distinguish two main categories:

Cache attacks While generally not related to DRAM ad-
dressing, cache attacks can be enabled or improved by the
knowledge of DRAM addressing. In some cache-based side
channels, e.g., Flush+Reload, the row hits can be confused
for cache hits, potentially adding noise for the attack [26].
Thus, taking into account physical-to-DRAM addressing re-
duces the risk of this confusion. Bechtel et al. [2] built a
DRAM-aware Denial-of-Service attack on the shared cache of
two multi-core embedded platforms. Knowing the translation
from physical addresses, used for cache addressing, to DRAM
addressing, the authors force the system’s cache misses to
target the same DRAM bank. This greatly increases load la-
tency, as cache misses will also cause a row-buffer conflict
and prevent bank-level parallelism. By using this method, they
achieve a slowdown of two orders of magnitude compared to
state-of-the-art Denial-of-Service attacks.

Schwarz et al. [28] demonstrated an attack targeting RSA
implementations executed within Intel’s SGX enclaves by
constructing cache eviction sets that leverage DRAM ad-
dress mapping. The authors start by identifying clusters of
addresses in a contiguous memory region (e.g., a bank) by
using the row-buffer conflict side channel. Then, the authors
use the reversed physical-to-DRAM mapping to recover bits
of information about the physical addresses of their set. Using
these recovered eviction sets, they build an eviction set able
to attack RSA implementations running inside Intel’s SGX
security enclave.

Rowhammer attacks Rowhammer is a micro-architectural
fault attack allowing attackers to flip bits outside of the mem-
ory allocated to their malicious unprivileged program. It is an
attack on process memory isolation. It takes advantage of a
previously known reliability issue of DRAM chips: Repeated
high-frequency accesses to the same position can leak charge
to neighboring cells, possibly causing their values to flip [19].
Manufacturers have tried to mitigate such attacks, most no-
tably with Target Row Refresh. It uses counters of accesses
to DRAM rows in order to refresh victim rows in case of a
suspicious number of accesses. However, subsequent works
have leveraged a known DRAM mapping to find contiguous
memory and hence build more complex hammering patterns

that circumvent TRR either by overloading the counter [7] or
by using the TRR-induced refreshes to do the hammering [20].
Moreover, RAMBleed [22] showed that precise hammering,
requiring in-depth knowledge of the physical-to-DRAM map-
ping, and the same knowledge of contiguous memory could
be used as a read side channel, thus leaking secrets. This
side channel has been developed to broaden its threat model
to attacks against DNNs [27] or cryptographic implementa-
tions [6]

3.2 Empirical DRAM Mapping Reverse-
Engineering Strategies

DRAMA [26] introduced the first generic methodology to re-
cover the addressing through the row-buffer-based side chan-
nel described in Section 2.1. In particular, by identifying
which address pairs create a row-buffer conflict, the authors
can create a cluster of addresses belonging to the same bank.
As a result, it is now possible to target the same bank, which
becomes useful for different attack strategies. For instance,
in the rowhammer case, this enables hammering several lines
in the same bank, circumventing existing countermeasures
like TRR [7]. In the case of a Denial-of-Service attack on a
cache, this allows a potential attacker to force each memory
access to be a row conflict, thus increasing latency on top of
cache misses [2]. DRAMA requires sampling the latencies
between pairs of addresses to build as many conflicting sets
as the expected total number of banks to find. Once those
sets are built, XOR masks are exhaustively tried until one is
found that explains the whole set. This brute-force approach
exhibits exponential complexity with respect to the number
of DRAM address bits, resulting in poor scalability on sys-
tems with larger memory capacities. For example, DRAMA
requires several hours to compute address masks on systems
equipped with 16 GB of DRAM [30].

Building upon DRAMA, DRAMDig [30] uses knowledge
about the geometry of specific DRAM chips and the pro-
cessor micro-architecture to reduce the search space of the
exponential-time search. While this made DRAMDig method-
ology results more precise than DRAMA, it severely reduces
its portability by making it platform-specific.

Helm et al. [10] improved DRAMA’s methodology by us-
ing Intel CPUs’ performance counters; specifically, the au-
thors used counters tracking the number of accesses to each
channel, rank, and bank. Similarly to DRAMDig, its gains in
performance and reliability come at the cost of generalizabil-
ity because those counters are only available on a few Intel
CPUs, again negatively affecting portability.

Heckel and Adamsky [9] introduced AMDRE, a novel
framework tackling DRAM addressing reverse-engineering
on AMD platforms that effectively adapts the methodol-
ogy originally developed in DRAMA. Jatke et al. [13] pro-
posed DARE, an AMD-specific technique that exploits en-
hanced timing-based synchronization and platform-dependent
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Table 1: Qualitative comparison of Knock-Knock with representative software-only approaches for DRAM address-mapping
recovery.

Tool Core idea Worst-case search
complexity

Provable
sample
bound

Noise
tolerance

Platform
Agnostic

Support for
complex row
addressing

DRAMA [26] • Cluster conflicts.
• Enumerate masks.

Exponential in candidate
address bits

DRAMDig [30] • Detect row/column bits.
• Guided search.

Exponential in reduced
candidate address bits

Helm et al. [10] • Cluster conflicts.
• Uses Intel counters.

Exponential in reduced
candidate address bits

Sudoku [32] • Cluster conflicts.
• 2 timing channels.

Exponential in reduced
candidate address bits

AMDRE [9] • Cluster conflicts.
• Enumerate masks.

Exponential in candidate
address bits

DARE [13] • Cluster conflicts.
• Enumerate masks.

Exponential in candidate
address bits

RISC-H [23] • Cluster conflicts.
• Enumerate masks.

Exponential in candidate
address bits

Knock-Knock (ours) • Detect conflicts.
• Null space analysis.

Polynomial through
gaussian elimination on
N×n matrix

insights. Notably, they observed that the DRAM address map-
ping on these systems exhibits non-linear behavior due to
physical address remapping. This means, as a result, that the
addressing functions found by previous methods only work on
small DRAM clusters but fail on larger, non-consecutive areas.
By introducing a constant offset prior to applying XOR opera-
tions, they demonstrated that the mapping can, in some cases,
be effectively reduced to a linear form. Nonetheless, DARE
fundamentally relies on an exhaustive brute-force exploration
of the XOR mask space. Marazzi and Razavi [23] introduced
the first Rowhammer attack on a RISC-V architecture, basing
their approach on AMDRE [9].

The Sudoku tool [32] revisits DRAMA’s clustering ap-
proach and augments it with two additional timing channels
using refresh latencies and amplified consecutive-access la-
tencies to label each discovered mask with its hierarchy level:
channel, rank, bank-group, bank. While this labeling improves
human interpretability, Sudoku does not improve DRAMA
and still inherits its exponentially complex mask-enumeration
step, requires timing parameters from the memory controller
registers, and leaves XOR-scrambled rows unresolved.

Table 1 compiles the existing works that approach the prob-
lem of non-algebraic reverse-engineering DRAM address
mapping, and provides a comparison among them. Based on
the provided survey of the state of the art, we can see how
the field has tackled the problem to improve the performance
from the seminal work in DRAMA [26], by crafting solutions
highly adapted to specific platforms. These approaches have
considered specific Intel processor performance counters [10],
precise knowledge about DRAM geometry [30], and adapta-
tions to other platforms like AMD [9] or RISC-V [23], as well
as improved methodologies [13] based on DRAMA/AMDRE

but only for AMD platforms. As a result:

We observe how (1) portability has been greatly sacri-
ficed at the cost of performance, and (2) no work has
challenged the fundamental problem of reducing the
complexity of the brute-force-search approach.

3.3 Linear Algebra For Unknown Mapping
Functions Discovery

An algebraic approach to discovering an unknown mapping
function consists of formulating the identification of the
function as a mathematical problem, and collecting pairs of
conflicting addresses to identify such a function while re-
specting the problem’s constraints. The use of linear algebra
finds use also in the construction of mapping functions [29].
Such employment may provide improvements or new reverse-
engineering strategies; yet, its scope is different from ours
and, for such, we will not discuss the related body of work.

Hofmann et al. [11], from a minimal set of conflicting
addresses, recover linear indexing functions through the it-
erative computation of the basis of the function’s nullspace.
The iterative step verifies whether any of the addresses in the
conflicting set is also part of the function’s kernel. Simulation-
driven analyses, tested on both cache indexing and DRAM
bank-indexing functions, show that the approach finds the
indexing function with fewer conflict checks with respect to a
brute-force approach.

Gerlach et al. [8] propose an automated and generic ap-
proach to reconstruct linear and non-linear mapping functions.
Their approach splits the mapping function f as the compo-
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sition of several mapping functions fi, where 0≤ i < n, and
n is the bitwidth of the mapping function’s output. Their ap-
proach recovers each function fi independently, converting
each function into a logic formula in Disjunction Normal
Form (DNF), transforming it to a system of polynomial equa-
tions, and retrieving a compact form of this system through
the computation of a Gröbner basis for the original system.
This process is then repeated for the subterms of the new sys-
tem of equations to further reduce the complexity of the final
mapping function formula. Finally, they build the unknown
mapping function from the minimized system of equations.

Compared to these previous works, although Knock-
Knock resembles the work of Hofmann et al. [11], it substan-
tially differs in both the approach, the focus, and the results.
Our approach targets the physical-to-DRAM mapping func-
tion instead of generic (linear) mapping functions, allowing
for the recovery of bank and row mappings. We base our
identification strategy on the computation of the conflicting
set’s nullspace; as such, we avoid the iterative check and com-
putation of the function’s nullspace. An extensive validation
campaign, encompassing several architectures, supports our
methodology, compared to their simulation-only approach
that neglects the impact of noisy measurements. Regarding
the work from Gerlach et al. [8], the authors recover non-
linear functions, whereas we target linear ones. Nonetheless,
Gerlach et al.’s generality implies a higher execution time to
recover linear functions. Also, Gerlach et al. need to probe
each input bit (e.g., the address bits) to know which has an
impact on the mapping function’s output. Our algebraic ap-
proach inherently identifies such bits (i.e., the mask bits) Fur-
thermore, the Gröbner base method is quite time-consuming,
requiring more than 10 hours to reverse a DRAM function.

In summary, state-of-the-art algebraic approaches lack em-
pirical evaluation, DRAM-specific metrics, and row-mapping
reversing. Consequently, a fully generic, black-box (i.e.,
platform- and DRAM-geometry-agnostic) and faster method-
ology is needed for more scalable, precise, and efficient dis-
covery of physical-to-DRAM mappings. This is the open
problem that we address with Knock-Knock, where we tar-
get an analytical, complexity-bounded, and provable reverse-
engineering methodology. Specifically, the research question
(RQ) that we try to answer with this work is:

RQ: Can we generalize the observations from the
row-buffer conflict side-channel and derive an an-
alytical approach to design a reverse-engineering
methodology portable to the maximum number of
targets?

4 High-Level Overview of Knock-Knock

In the rest of this paper, we describe Knock-Knock, our so-
lution for fast, black-box, and platform-agnostic physical-to-

DRAM address-mapping reverse engineering. Figure 5 illus-
trates Knock-Knock’s reverse-engineering pipeline, which is
divided into two phases: data generation (executed on the
target system) and reversing (performed offline). Within the
figure, for the reader’s convenience, we add references to sec-
tions where important parts of the methodology are described.

In the first data generation phase, the system generates ran-
dom address pairs (A,B) and measures the access latency
between them. Pairs with a high-latency access are clus-
tered as conflicting, i.e., belonging to different rows of the
same bank, whereas low-latency pairs are labeled as non-
conflicting, i.e., belonging to different banks or the same row
of the same bank. This phase is identical to the clustering
phase of DRAMA [26].

Knock-Knock then enters its first reversing phase, de-
scribed in Section 5. Then, we use the conflicting pairs to
build a difference matrix, enabling the recovery of the bank
addressing function by solving a system of linear equations.

The bank mappings are then used in the second data genera-
tion phase to leverage a variant of the row-buffer side channel
to build pairs of addresses belonging to different rows in the
same bank. The system generates address pairs (A,B) belong-
ing to the same bank and measures the access latency between
them. Pairs with a high-latency access denote a row-buffer
conflict, i.e., belonging to different rows. On the contrary,
pairs with a low access latency indicate a row-buffer hit, i.e.,
both addresses belong to the same row of the same bank.

The second reversing phase, described in Section 6, uses
the cluster of addresses belonging to the same row of the
same bank to construct another difference matrix to derive the
row addressing function. The inferred bank and row functions
form the complete physical-to-DRAM addressing function.

4.1 Using Linear Algebra for Reverse-
Engineering

The fundamental idea behind Knock-Knock is to formulate
the problem of identifying the parity masks as a linear algebra
problem. We first mathematically define when two addresses
cause a row-buffer conflict. Second, from this definition and
from a set of randomly generated address pairs, we show
how to build a system of linear equations that puts conflicting
addresses in relation. Third, we prove that the solution to this
system is a valid set of parity masks. By describing the search
problem as the computation of a solution to a system of linear
equations, we effectively bound the time complexity of the
worst-case scenario to the time complexity of the particular
algorithm used to solve the linear system. While this reduction
is sufficient for the channel and bank masks, for which we only
want to check equality between addresses, we later introduce
some different hypotheses to determine functions for the rows.

An important assumption supporting our methodology
is the linearity of the address mapping function, which
many previous works verified in practice in different in-
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Figure 5: Pipeline of the reverse-engineering methodology

stances [10, 20, 26, 30]. To the best of our knowledge, only
ZenHammer [13] showed a case of non-linear mapping, im-
plied by an offset added to physical addresses. We believe
that our methodology is fully applicable even in such cases:
As ZenHammer’s authors showed, it is possible to remove
this offset, making the mapping linear.

4.2 Mathematical Definitions and Notation
We denote scalar variables with small italic letters (e.g., n
number of bits). Capital italic letters denote n-bit vectors
(e.g., a physical address A); we also use the notation Ai to
define several vectors, where the scalar index i is bound by
the context. A capital bold italic letter denotes a matrix (e.g.,
MMM) defined on the set {0,1}. We use a blackboard bold capital
letter to denote a set (e.g., a set S). The operator | · | defines
the cardinality of a set (e.g., |S|).

We consider a DRAM addressed with n-bit ad-
dresses, and describe its locations with 6-tuples
⟨Channel,module,Rank,Bank,Row,Column⟩. For a
given physical address A, we use the notation Row(A),
Bank(A), Channel(A) to extract the respective components
of A’s DRAM location. Given Φ and ∆, the DRAM’s address
space and location space, respectively, we define

f : Φ→ ∆ (1)

as the DRAM address mapping function.
We denote the access latency for two physical addresses A

and B with L(A,B). As explained in Section 2.1, for two ran-
domly chosen addresses A and B, the access latency follows

a mixture of two distributions. We define T as the threshold
latency that separates the two distributions. We denote with
∧, according to the context, either the bit-wise or the logical
AND. Then, we can describe the relation between row-buffer
conflict and access latency with the following proposition:

L(A,B)> T ⇔ Row(A) ̸= Row(B)∧Bank(A) = Bank(B)
∧Chan(A) = Chan(B)

Denoting with⊕ the bit-wise XOR and with (A)l the access
to the l-th bit of the n-bit address A, we define

p(A) =
n−1⊕
l=0

(A)l (2)

the parity of A.
For any matrix MMM, we define with rk(MMM) the number of

linearly independent rows (equivalently, columns) of MMM. With
MMMT we denote the transpose of MMM.

We use HW(V ) as the Hamming weight of the bit vector
V . We denote with P(·) the probability of a certain event.

5 Finding Bank and Channel Parity Masks via
Nullspace Analysis

This section tackles the first reverse engineering phase of
Knock-Knock, illustrated in Figure 6. The goal is to retrieve
bank and channel parity masks in a purely platform-agnostic
approach. While our approach does not separate which bits are
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Eight conflict pairs
A B

0000 0001
1000 1001
0100 0101
1110 1111
0000 0010
1100 1110
0011 0001
1010 1001

Difference matrix DDD
A⊕B

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 1



Row-reduce DDD[
0 0 0 1
0 0 1 0

] Solve DDD ·MMMT = 0

XXX =

[
1 0 0 0
0 1 0 0

]
Recovered function

p0 p1 p2 p3

b0 b1

Mask 1 Mask 2

Figure 6: The eight conflict pairs (A,B) only differ in their two low-order bits, so every XOR difference A⊕B contains at least
0001 or 0010. Stacking those differences produces the matrix DDD. We eliminate rows to only keep independent rows. We solve
DDD ·MMMT = 0 and get a basis, giving us the functions that associate the physical address bits pi to the bank index bits bi.

used to address the channel and which to address the banks,
this mask allows the translation from a physical address to
a unique bank. By using the clusters of pairs of addresses
belonging to the same bank, we build a difference matrix, i.e.,
a matrix containing the results of the XOR of each pair of
addresses. This matrix is then used to produce a system of
linear equations. The solution to this system gives a basis for
the bank bits of the physical address.

5.1 Problem statement
The problem of reverse-engineering the bank and channel
parity masks is to find a set of k ≥ 1 masks M j ∈ {0,1}n

such that, for any two physical addresses Ai,Bi ∈ {0,1}n in
the same memory module2, the following condition holds
∀ j ∈ [1,k ]:

p(Ai∧M j) = p(Bi∧M j)⇔ Bank(Ai) = Bank(Bi)

∧ Chan(Ai) = Chan(Bi)
(3)

That is, the parity distinguishes which addresses are in the
same bank and channel.

5.2 Reduction to Nullspace Analysis
Let us consider a set S of m≥ 1 randomly generated address
pairs Ai,Bi:

S= {(Ai,Bi)∈Φ
2 |Bank(Ai)=Bank(Bi)∧Chan(Ai)=Chan(Bi)}

(4)
Using the definition of parity (Equation (2)), we refactor

the if term of Equation (3) as:

n−1⊕
l=0

(Ai∧M j⊕Bi∧M j)l = 0,

2In order to simplify notations, we do not include memory module in the
equation.

and since ∧ is distributive over ⊕, we have that:

n−1⊕
l=0

((Ai⊕Bi)∧M j)l = 0. (5)

Given Di = Ai⊕Bi the i-th difference word, we rewrite
Equation (5) as:

n−1⊕
l=0

(Di)l ∧ (M j)l = Di ·MT
j = 0. (6)

Then, we can define the following difference matrix:

DDD =


D1
D2
...

Dm

 ∈ {0,1}m×n.

For k parity masks, we define the mask matrix:

MMM =


M1
M2

...
Mk

 ∈ {0,1}k×n.

Given DDD and MMM, we can rewrite the if part of Equation (3)
in matrix form:

DDD ·MMMT = 0.

Under the condition of sufficient m number of address pairs
(see Section 7.2), the Rank-Nullity theorem [17] guarantees
that the nullspace of the difference matrix DDD coincides with
the set M of possible parity masks:

nullspace(DDD) = {M j ∈ {0,1}n | DDD ·MT
j = 0}. (7)

Thus, we have :

∀ DDD ∈ {0,1}m×n, M= nullspace(DDD).

8



Any base of M describes, in matrix form, a bank addressing
function. We remark that for a given difference matrix DDD, the
nullspace basis is not unique in general. However, any two
bases BBB,BBB′ ∈ {0,1}k×n of nullspace(DDD) classify any address
pair in the same manner (i.e., as conflicting or non-conflicting
addresses) under the condition that there exists an invertible
matrix PPP ∈ {0,1}k×k such that BBB = PPP ·BBB′. Indeed, given two
randomly generated addresses A and B, we can expand Equa-
tion (6) as:

D ·BBBT = (A⊕B) ·BBBT = (A⊕B) · (PPP ·BBB′)T = (A⊕B) · (BBB′)T ·PPPT .

Being PPP invertible and D ·BBBT = 0, we have that:

(A⊕B) ·BBBT = (A⊕B) · (BBB′)T = 0.

We have shown how the computation of the nullspace of a
matrix built from conflicting addresses provides us with a set
of parity masks indexing the bank and channel of an address.
We now show how to recover the masks used to index the row
of an address.

Summary 1: Using nullspace analysis, we retrieve
a set of parity masks that describe the mapping from
physical addresses to banks and channels.

6 Finding Row Parity Masks via Nullspace
Analysis

Now that we have a set of masks M j determining if two ad-
dresses belong to the same bank and channel, we need to
identify the masks indexing the row bits in the addresses. To
this end, we apply the same nullspace approach described in
Section 5, but we consider the subset of only-conflicting ad-
dresses: Addresses belonging to the same bank have a lower
access latency when mapped to the same row (i.e., row hits)
than when mapped to different rows (i.e., row conflicts). This
different use of the row-buffer-conflict side channel corre-
sponds to the second Data Generation phase of Figure 5. The
objective of this section is to build a difference matrix from
this data cluster, which enables us to build a row addressing
function with minimal hardware hypotheses, corresponding
to the second reversing phase of Figure 5.

6.1 A Sufficient Condition to Reduce the Row
Masks Search

Using our clusters, we begin by searching a vector of bits
Mrow that never vary between two addresses in the same row.
In fact, if a bit varies in the same row address pair, it cannot be
used for row calculation. Let us consider the set S of randomly
generated addresses A and B (Equation (4)).

Thanks to Equation (3) and the bank masks M j we have
found, we have that:

S= {(Ai,Bi) ∈Φ
2 | ∀ j ∈ [1,k], p(Ai∧M j) = p(Bi∧M j)}

Being T the threshold separating low-latency access ad-
dresses from the high-latency ones (Section 4.2), we define
Slow the set of address pairs in S mapping to the same row
(i.e., they have a lower latency access):

Slow = {(Ai,Bi) ∈ S | L(Ai,Bi)< T} ⊆ S.

As stated above, we look for parity masks Mrow,low selecting
bits that are always the same in both Ai,Bi ∈ Slow:

∀ l ∈ [0,n−1] : (Mrow,low)l =
∧

(Ai,Bi)∈Slow

[(Ai)l = (Bi)l ]. (8)

From Equation (8), we derive the following sufficient con-
dition ∀Ai,Bi ∈ Slow:

Mrow,low∧Ai = Mrow,low∧Bi =⇒ Row(Ai) = Row(Bi). (9)

This condition restricts the search of row parity masks
Mrow, low to only those that satisfy Equation (8).

A simple row mapping (i.e., all the row bits set sequentially
in the physical address) will give the complete row mapping.

Summary 2: By comparing same-bank addresses
belonging to the same row, we build a first coarse-
grained row addressing function.

6.2 Building a Basis for the Row Parity Masks
From the set Slow of address pairs mapped to the same bank
and row, we create the following difference matrix:

DDDrow =


A1⊕B1
A2⊕B2

...
Am′ ⊕Bm′

 ∈ {0,1}m′×n,

where Ai, Bi ∈ Slow, and m′ = |Slow|.
Given k′ ≥ 1 row masks, we define the row mask matrix:

RRR =


R1
R2
...

Rk′

 ∈ {0,1}k′×n.

We rewrite the if condition of Equation (9) as:

DDDrow ·RRRT = 0.

9



0
p0

1
p1

0
p2

1
p3

1
p4

0
p5

0
p6

Physical address

0
r0

1
r1

0
r2

1
r3

1
r4

0
r5

0
r6

Row index

⊕ ⊕

Figure 7: Two row addressing functions. The one highlighted
in blue verifies item C.1 while the one in red does not. ri and
pi represent, respectively, the row and physical address bits.

Under the condition that Slow contains a sufficiently large
number m′ of address pairs (see Section 7.2), the Rank-Nullity
theorem [17] guarantees that:

∀ DDDrow ∈ {0,1}m′×n, R= nullspace(DDDrow).

We reduce R by removing from it the parity masks that
selects bits not causing a row conflict when flipped (i.e.,, not
contributing to the row-index computation). Thus, we remove
the masks that select column bits in the address.

A basis RRR of R is equivalent to the RRRtrue basis underlying
the real row address mapping, up to a change of basis (Sec-
tion 5.2); that is, given any two addresses A and B, the row
parity masks generated by RRR provide the same classification
for A and B (i.e., they row-conflict or not) as the RRRtrue’s row
parity masks.

The complete address mapping function f (Equation (1))
is defined, in matrix form, as:

FFF =

(
MMM
RRR

)
.

In the next section, we provide an algorithm to determine
such a basis RRR.

6.3 An Algorithm to Recover the Row-
Mapping Function

We aim to recover a plausible basis RRR ∈ {0,1}k′×n for the row
parity verifying the following conditions:

C.1 Each row RRR j includes bit position j, meaning RRR j[ j] = 1,
as illustrated in Figure 7 . This pivot mirrors the common
hardware implementation of a direct wire combined with
a few XOR gates and gives us a canonical basis,

Algorithm 1 Rank–aware Row Basis Search
Require: MMM ∈ {0,1}k×n — fixed bank-mask matrix,

R⊆ {0,1}n — candidate row-mask vectors,
k′ — target row-space dimension.

Ensure: RRR ∈ {0,1}k′×n with rk[MMM;RRR] = k+ k′ and minimal total Hamming
weight.

1: function BACKTRACK( j, BBB, r, w)
2: if r+(k′− j)< rinit + k′ then ▷ rank can no longer reach k+ k′

3: return
4: if j = k′ then ▷ full basis selected
5: if w < wmin then
6: BBBbest← BBB, wmin← w
7: return
8: for all V ∈ C j do
9: if rk([MMM;BBB;V ]) = r then ▷ V linearly dependent

10: continue
11: BBB′← [BBB;V ], r′← r+1, w′← w+HW(V )
12: if w′ < wmin then
13: BACKTRACK( j+1, BBB′, r′, w′)
14:
15: rinit← rk(MMM) ▷ rinit = k
16: for j← 0 to k′−1 do
17: C j ←{V ∈ R |V [ j] = 1} ▷ sortC j by increasing Hamming weight
18:
19: BBBbest← [ ], wmin← ∞

20: BACKTRACK(0, [ ], rinit, 0)
21: RRR← BBBbest
22:
23: return RRR

C.2 The basis has a Hamming weight as low as possible,
implying a lower amount of logical gates in hardware.
We hypothesize this as a reasonable assumption to min-
imize resources, which is sustained by previous find-
ings [16, 20, 26],

C.3 To guarantee that FFF provides an equivalent addressing
to the targeted physical-to-DRAM addressing function,
the rank of RRR must satisfy:

rk(FFF) = rk(MMM)+ rk(RRR).

We discuss the justification and implications of these hy-
potheses in Section 8. We remark that the linear independence
of RRR’s rows guarantees the surjectivity of the row addressing
function.

Algorithm 1 describes a procedure that builds a basis RRR sat-
isfying the above-mentioned conditions. Firstly, the algorithm
partitions the set of row masks R into totally ordered sets
C j = {V ∈ R | V [ j] = 1}, each sorted by Hamming weight
(Line 16 – Line 17). Then, the algorithm starts the search
for a basis RRR by calling the recursive function Backtrack
(Line 20). Backtrack searches in C j a row mask V that se-
lect the j-th row bit (Line 8 – Line 13). The function skips
any row mask V that does not increase the current rank r
of [MMM;BBB] (i.e., the composition of MMM and BBB along the row-
axis) (Line 9 – Line 10); otherwise, Backtrack adds V to the
current basis BBB, updates the rank and the Hamming weight
(Line 11), and calls itself to explore the set C j+1 (Line 13).
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The algorithm interrupts the recursive search (i.e., it back-
tracks) in two occasions: when the current basis BBB cannot
reach full rank (i.e., it cannot satisfy condition C.3) (Line 2 –
Line 3); when the new identified basis has lower Hamming
weight than the best basis found so far (Line 4 – Line 7). The
in-order exploration of each set C j provides a row basis RRR
whose diagonal elements are set to 1 (i.e., the algorithm satis-
fies condition C.1). The algorithm provides a final basis BBBbest
such that rk[MMM;RRR] = rk(MMM)+ k′ (i.e., the algorithm satisfies
condition C.3) while minimizing the basis’ Hamming weight
(i.e., the algorithm satisfies condition C.2).

Thus, from the previously retrieved bank masks and a new
targeted latency analysis using these masks, we can build an
addressing function for the rows.

Summary 3: Using the same methodology as for
the banks in Section 5.2, our previously built coarse-
grained row function, and hardware-based hypotheses,
we build a plausible row addressing function that
explains observed latencies.

7 Evaluation

7.1 Experimental setup
We evaluate our methodology in a range of platforms from
embedded to server-class SoCs, and for three different In-
struction Set Architectures (ISA). For x86 targets, we use the
clflush instruction to evict the address pairs from the cache,
allowing us to be sure of measuring DRAM latencies. We use
the rdtsc instruction for timing measurements. On ARMv8,
we use DC CIVAC for cache eviction, and the PMCCNTR cycle
counter for measurement. On ppc64le we flush each cache
line with the dcbf instruction and time the access using the
64-bit time-base counter read by mftb.

7.2 Number of Required Samples
To ensure the practical effectiveness of our methodology, we
propose a theoretical upper bound to the cardinality m = |S|
(i.e., the set of randomly generated address pairs) required to
achieve bank mask recovery. With t = n−k unknown mask di-
mensions and latency misclassification rate θ ∈ [0,1), choos-
ing m samples such that:

m≥ 2k

1−θ
· log2(

2n−k−1
ε

)

suffices to have rk(DDD) = t with a probability greater or equal
than 1− ε, with ε ∈ [0,1) an arbitrarily defined accepted fail-
ure probability.

We provide a similar bound on the cardinality m = |Slow|
(i.e., the set of address pairs in S exhibiting low access la-
tency): it is sufficient to replace k with k′ (the number of row

Total pairs D

Subsample D1

Solutions :
0xA53E9000

0x4C21A000

0x80000000

0x12F00000

Subsample D2

Solutions :
0xA53E9000

0x00000800

0x80000000

0x03C40000

Subsample D3

Solutions :
0x4C21A000

0x80000000

0x00000800

0xDEADA550

Majority vote
0x00000800

0x4C21A000

0x80000000

0xA53E9000

Figure 8: Subsampling with majority vote. Spurious masks
(red strike-through) appear in only one subsample and are
discarded; masks present in at least two subsamples survive
in the final set.

parity masks), and n with n− k (as we have already deter-
mined the identity of k out of n address bits).

The complete bound’s derivation is provided in Ap-
pendix A.1.

7.3 Subsampling Technique
Empirical latency measurements inherently contain noise,
causing occasional misclassifications of address pairs as con-
flicting or non-conflicting. Because such pairs do not verify
the same relationships as their correctly-labeled counterparts,
they increase the rank of the difference matrix D, thus de-
creasing the dimension of the nullspace and reducing the
number of found masks. To handle this noise, we introduce a
subsampling technique illustrated in Figure 8:

• Instead of solving only once, we run our methodology
on multiple smaller sets of pairs.

• Final masks are chosen by a majority vote, selecting
masks that appear the most consistently.

7.4 Results and Validation
To validate our methodology and the implemented code, we
first use synthetic data generated from functions retrieved
by previous works [20] to check if Knock-Knock is able to
give back the same mappings found by these works. In a
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Table 2: Retrieved parity masks and address mappings for evaluated platforms.

Platform Architecture SoC DRAM Comparison to
Previous Work

Raspberry Pi 3B+ ARMv8 Broadcom BCM2837B0 1 GB LPDDR2 Matches [18]
Google Pixel 3a ARMv8 Snapdragon 670 4 GB LPDDR4 New
Switch P4 x86 Intel Pentium D1517 8 GB DDR4 New
Dell Precision Tower 5810 x86 Intel E5-1650 v3 32 GB DDR4 New
Dell Precision Tower 7875 x86 AMD Threadripper PRO 7955WX 64 GB DDR5 New
Dell PowerEdge R630 x86 Intel Xeon E5-2630 v3 128 GB DDR4 Matches [26]
HPE Proliant DL360 Gen10+ x86 Intel Xeon Silver 4314 256 GB DDR4 New
ThinkSystem SR630 V2 x86 Intel Xeon Gold 5318Y 256 GB DDR4 New
Nvidia DGX-1 x86 Intel Xeon E5-2698 v4 512 GB DDR4 New
IBM PowerNV S822LC ppc64le IBM POWER8NVL 1.0 128 GB DDR4 New

second step, we use real-world datasets obtained by running
Knock-Knock on target platforms as shown in Table 2.

In a first step, for targets with known mappings that we did
not have access to, we predict whether a conflict would hap-
pen or not between two randomly generated addresses using
the documented functions. Then, we input this artificial data
into our algorithm to check its ability to retrieve the functions
and compare them back with the mappings found in the origi-
nal work [20]. We run experiments using a synthetic dataset
built from up to 100,000 randomly generated addresses, and
we find a 100% accuracy in the mapping functions found.
With this method, we could also test for the tolerance to noise.
We did so by modifying the dataset with up to 5% of mis-
classified timings. The results in this case, still giving a 100%
accuracy of recovering, showed how the methodology can
tolerate measurement noise.

Secondly, we evaluate the accuracy of our masks by mea-
suring their ability to correctly predict high and low-latency
address pairs. These are generated through an additional vali-
dation step using 10,000 new latency measurements. For this
real-world data, we leverage the privileged /proc/pagemap
interface to translate virtual addresses to physical addresses,
and measure access latencies using high-resolution timers.
We discuss how this requirement does not nullify the threat
model in Section 8. When available, the recovered masks are
validated against known hardware configurations or previous
works. For the E5-2630 v3, while DRAMA [26] documents
found masks on their 64GB setup, we could not reproduce the
result using their source code [12] on our 128GB platform.
This is probably due to the exponential search phase, reaching
its timeout after a few hours, before fully achieving parity-
mask recovery. Knock-Knock allowed us to retrieve similar
masks to those documented in the original article in just a few
minutes. The list of platforms and their respective results is
summarized in Table 2 and Table 3. We find functions for pre-
viously undocumented targets, across different architectures
and use cases, ranging from embedded to server-class hard-
ware. We compare our functions with previous works [18,26]

and find similar functions when the target matches. We use
standard classification metrics like precision (T P/T P+FP)
and recall (T P/T P+FN) to evaluate our results, where T P,
FP, T N and FN are defined as follows:
T P: True positive - Predicted and real conflict;
FP: False positive - Predicted conflict, real non-conflict;
T N: True negative - Predicted and real non conflict;
FN: False negative - Predicted non-conflict, real conflict.

For each target, we evaluate the recall and the precision and
find that they are both greater than 99%, meaning that the
found masks correctly explain the observed conflicts.

Summary 4: Our method works with > 99% recall
and precision, even in noisy environments. The re-
sults match previous reverse-engineering works, with
a faster search phase and a black-box approach.

8 Discussion

Closed-Page Policy: We tested some platforms, notably the
Raspberry Pi 4 4GB and the Nvidia Jetson Nano, for which
we were unable to retrieve any part of the mapping. The la-
tency measurements showed a single distribution, indicating
a closed-page policy. A closed-page policy means that the
memory controller closes the row after each access [3], which
prevents us from differentiating between row hits and row con-
flicts. Because the row buffer is always closed after use, each
memory access has to be served from the bank, eliminating
the lower latency peak seen in Figure 2.

Privileged access to the pagemap: While we assumed
privileged access to the /proc/pagemap interface, which is
a common threat model [26, 30], we consider that this does
not invalidate the attack vector that this work makes possi-
ble. Indeed, for tested devices, the mapping was consistent
across different devices of the same model. Therefore, an
attacker owning the same device as their victim could use the
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knowledge obtained from characterising their device, and use
it later on from a malicious process on the victim’s device,
even if it only has access to the virtual address [2, 20]. The
labeling methodology described in Sudoku [32] could be used
as a post-processing step on top of Knock-Knock to improve
human readability, although it does not bring any improve-
ment in the considered use case of attacks building on known
DRAM address mappings.

Ground truth: Our attack being purely based on software,
we consider the translation from physical address to DRAM
rows. This addressing relies on several different mappings,
such as the memory controller’s mapping and the DRAM’s
internal addressing. Our method cannot disentangle these
mappings; instead, it treats the entire translation pipeline as
a single black box. While this remains sufficient to mount
attacks on the DRAM, such as Rowhammer, this approach
may present limitations. For instance, modifying the CPU
configuration may affect the memory controller map only,
and not the DRAM internal mapping. This approach remains
the state-of-the-art standard for software-based physical-to-
DRAM addressing [9, 10, 13, 30, 32], where we improve pre-
vious methods with speed, reliability, and portability. Only a
few works [5,26] leveraged physical probing to get the ground
truth necessary to reverse the memory controller mapping. We
believe combining our method with physical probing could
enable separating the memory controller and DRAM internal
mappings, providing a more complete understanding of the
translation process, potentially resulting in a finer-grained
control of the DRAM. Such physical probing could also con-
firm the efficiency of our method by ruling out other sources
of contention when using the row-buffer side channel.

Hypotheses: Another limitation of Knock-Knock lies in
the hypotheses of Section 6.3. While we only need them to
reverse physical-to-row mappings, which is one of the new
contributions of Knock-Knock, we acknowledge that they
still reduce the portability of our method. Without these, the
indexing of rows might be false, resulting in an incorrect
mapping. However, we consider these hypotheses realistic, as
they were verified on all tested systems in the evaluation and
compared with previous work when available [20, 26].

Applications on countermeasures Due to its automated
and fast approach, Knock-Knock can be used to defeat mit-
igations based on DRAM-address randomization [24]. By
just running Knock-Knock after each SoC boot, effectively
reversing the randomization, an attacker could still implement
attacks requiring physical-to-DRAM-addressing functions in
a reasonable time. We leave the evaluation of the impact of
Knock-Knock on existing countermeasures to future work.

9 Conclusion

In this work, we have presented Knock-Knock, a black-box
and platform-agnostic methodology that formalizes physical-
to-DRAM address-mapping reverse engineering. To achieve

so, we have developed an analytical and provable methodol-
ogy that bounds the complexity of the search space of possible
DRAM addressing functions. The key contribution of Knock-
Knock is the formalization of physical-to-DRAM mapping
reverse engineering, which enables retrieving functions with
only timing measurements and elementary linear algebra. This
formalization allows for improved noise resilience, which we
tackled during the analytical phase of the methodology, com-
pared to previous works that have tried to improve mislabeling
during the data generation and reversing phase. We have vali-
dated our method on 10 machines, spanning from embedded
SoCs to server-grade clusters, and achieved a 99% recall and
precision rate on all targets, running in only a few minutes on
systems with up to 512GB of DRAM. Knock-Knock paves
the way to more extensive, precise, and generic studies on mi-
croarchitectural security of memory systems across different
system classes and architectures. To that end, we publish our
code and data in a public repository3.
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Table 3: Retrieved parity masks and address mappings for evaluated platforms. [x,y] indicate that the masks have bits x and y set,
while for masks with multiple bits we describe them using their hexadecimal representations.
Platform Retrieved Bank/Channel Masks

Raspberry Pi 3B+ [13], [14], [15]
Google Pixel 3a 0x274e9000, 0x69d3a000, 0x53a74000, 0x80000000
Switch P4 [6,20], [17, 21], [18,22], [19, 23], [32, 33]
Dell Precision Tower 5810 0x8000, 0x100000000, 0x200000000, 0x400000000, 0x800040, 0x1100000, 0x2200000, 0x4400000, 0x55080,

0x88a2100
Dell Precision Tower 7875 0x84201000, 0x40214100, 0x188400200, 0x1421002000, 0x310800400, 0x1842100800, 0xff80000,

0xd6f700440
Dell PowerEdge R630 0x800040, 0xa00000000, 0xc00000000, 0x3000000000, 0x4408000, 0x2820000000, 0x5500000, 0x6600000,

0x88a2100, 0x4455080
HPE Proliant DL360
Gen10+

[15], [35], [36], [37], [6,23], [20,24], [21,25], [22, 26], 0x4004100, 0x6024800

Nvidia DGX-1 [37], [38], [16], [15], [21,25], [6, 24], [7, 17], [23, 27], [22, 26], [8, 12, 14, 18,
20, 24]

ThinkSystem SR630 V2 [16], [35], [36], [37], [6, 24], [21, 25], [22, 26], [23, 27], [8, 14, 26], [9, 15, 27],
[11, 14, 17, 25, 26]

IBM PowerNV S822LC [7],[8],[9],[10],[11],[12],[13],[14],[15],[32,34],[33,34]

A Appendix

A.1 Sample Complexity for Recovering the
Bank/Channel Masks

For our methodology, it is important to randomly generate
a sufficient number m of n-bit address pairs to satisfy Equa-
tion (7) (Section 5.2).

In practice, we have to bound s such that:

P[rk(DDD) = t]≥ 1− ε, (10)

where DDD is the difference matrix of size m×n, t = n− k is
the targeted rank for DDD, k is the dimension of nullspace(DDD),
and ε ∈ [0,1) is the arbitrarily defined accepted failure proba-
bility. We define θ ∈ [0,1) as the proportion of misclassified
pairs, i.e., the proportion of address pairs that are not conflicts
but are classified as such. We do not consider ε = 1 and θ = 1
as, in such cases, it is not possible to recover the bank and
channel masks.

Then, we define mc as the number of address pairs classified
as conflicts. Therefore, for a required mc conflicting pairs, we
need to randomly generate m address pairs such that:

m =
2k

1−θ
·mc. (11)

To simplify the computation, we calculate a lower bound
for this probability using DDDt ∈{0,1}mc×t , which only contains
the t first columns of DDD.

By construction :

P[rk(DDD) = t]≥ P[rk(DDDt) = t].

We denote d j as the j-th column of DDDt . We remark that all
DDDt’s columns are randomly drawn with replacement from a
uniform distribution over {0,1}t .

Let us assume that we have already found j linearly in-
dependent columns. These columns span a set of vectors of
size 2 j. Therefore, the probability that column d j+1 is linearly
independent from the already chosen columns is:

P[d j+1 is linearly independent] = 1− 2 j

2mc
= 1−2 j−mc .

Then, the probability of randomly drawing t linearly indepen-
dent rows is:

P[rk(DDDt) = t] =
t−1

∏
j=0

(
1−2 j−mc

)
.

According to the Weierstrass’ product inequality [4]:

P[rk(DDDt) = t]≥ 1−2−mc ·
t−1

∑
j=0

(
2 j−1

)
= 1− 2t −1

2mc
(12)

Combining Equation (10) and Equation (12), we have that:

ε =
2t −1
2mc

. (13)

By applying Equation (11) to Equation (13), we find that
Equation (10) is satisfied for:

m≥ 2k

1−θ
· log2(

2n−k−1
ε

).

As an example, for n = 32 bit addresses (i.e., 4 GB Mem-
ory), k = 4 (i.e., 8 banks and 2 channels), θ = 0.05 (i.e., 5%
misclassifications), and ε = 0.01 we would need m≥ 584 ran-
domly generated address pairs to guarantee the identification
of parity masks for banks and channels.
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To guarantee the recovery of the row parity masks, we
follow the same reasoning to provide a bound similar to the
one we have derived for bank parity masks:

m′ ≥ 2k′

1−θ
· log2(

2n−k−k′ −1
ε

).

Using the same parameters defined in the previous example,
and for k′ = 4 row bits, we would need m′ ≥ 517 address pairs
exhibiting low access latency.
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